***2
الگوریتم ژنتیک
الگوریتم ژنتیک روش یادگیری بر پایه تکامل بیولوژیک است.
این روش در سال 1970 توسط John Holland معرفی گردید
این روشها با نام Evolutionary Algorithms نیز خوانده میشوند.
***3
ایده کلی
یک GA برای حل یک مسئله مجموعه بسیار بزرگی از راه حلهای ممکن ار تولید میکند.
هر یک از این راه حلها با استفاده از یک “ تابع تناسب” مورد ارزیابی قرار میگیرد.
آنگاه تعدادی از بهترین راه حلها باعث تولید راه حلهای جدیدی میشوند. که اینکار باعث تکامل راه حلها میگردد.
بدین ترتیب فضای جستجو در جهتی تکامل پیدا میکند که به راه حل مطلوب برسد
در صورت انتخاب صحیح پارامترها، این روش میتواند بسیار موثر عمل نماید.
***4
فضای فرضیه
الگوریتم ژنتیک بجای جستجوی فرضیه های general-to specific و یا simple to complex فرضیه ها ی جدید را با تغییر و ترکیب متوالی اجزا بهترین فرضیه های موجود بدست میاورد.
در هرمرحله مجموعه ای از فرضیه ها که جمعیت (population) نامیده میشوند از طریق جایگزینی بخشی از جمعیت فعلی با فرزندانی که از بهترین فرضیه های موجود حاصل شده اند بدست میآید.
***5
ویژگیها
الگوریتم های ژنتیک در مسائلی که فضای جستجوی بزرگی داشته باشند میتواند بکار گرفته شود.
همچنین در مسایلی با فضای فرضیه پیچیده که تاثیر اجرا آن در فرضیه کلی ناشناخته باشند میتوان از GA برای جستجو استفاده نمود.
برای discrete optimizationبسیار مورد استفاده قرار میگیرد.
الگوریتم های ژنتیک را میتوان براحتی بصورت موازی اجرا نمود از اینرو میتوان کامپیوتر های ارزان قیمت تری را بصورت موازی مورد استفاده قرار داد.
امکان به تله افتادن این الگوریتم در مینیمم محلی کمتر از سایر روشهاست.
از لحاظ محاسباتی پرهزینه هستند.
تضمینی برای رسیدن به جواب بهینه وجود ندارد.